1、把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。 正比例函数y=kx的图象是经过原点(0,0)的一条直线。
1、关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
2、对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
3、每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。 在数轴上,右边的点表示的数比左边的点表示的数大。
4、初二数学知识点总结归纳 勾股定理 勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。勾股定理的逆定理 如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
5、初二数学一次函数重点知识(一) 定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。
6、第十七章《反比例函数》知识点整理 定义:形如y= (k为常数,k0)的函数称为反比例函数。其他形式 xy=k (k为常数,k0)都是。图像:反比例函数的图像属于双曲线。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。 在数轴上,右边的点表示的数比左边的点表示的数大。
初二数学知识点总结归纳 勾股定理 勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。勾股定理的逆定理 如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
基本性质: ⑴对称的性质: ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。 ②对称的图形都全等。 ⑵线段垂直平分线的性质: ①线段垂直平分线上的点与这条线段两个端点的距离相等。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。
初二数学知识点总结归纳 勾股定理 勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。勾股定理的逆定理 如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。 ⑷作已知图形关于某直线的对称图形: ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。 初二数学下册知识点归纳 一次函数 正比例函数与一次函数的概念: 一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
初二数学一次函数重点知识(一) 定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。 正比例函数y=kx的图象是经过原点(0,0)的一条直线。
初二数学知识点总结归纳 勾股定理 勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。勾股定理的逆定理 如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。 ⑷作已知图形关于某直线的对称图形: ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
1、一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。
2、初二数学 整式的乘法知识梳理(一) 单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
3、⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。 ⑷作已知图形关于某直线的对称图形: ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。