1、奇函数乘以奇函数所得函数为偶函数。对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
结果是:偶函数。根据奇函数和偶函数的特点和定义,如果奇函数×奇函数,结果便是“偶函数”。
奇函数×奇函数是偶函数。奇函数乘以奇函数等于偶函数。奇函数乘偶函数是奇函数,奇函数加减奇函数是奇函数,偶函数加减偶函数是偶函数,奇函数乘奇函数是偶函数,偶函数乘偶函数是偶函数。偶函数乘偶函数是偶函数。
是奇函数。记F(x)=G(x)/H(x), G(x)为奇函数,H(x)为偶函数,如果H(x)有零点,那么也是正负成对的,因此F(x)的定义域仍然关于原点对称。而且F(-x)=G(-x)/H(-x)=-G(x)/H(x)=-F(x)。
1、结果是:偶函数。根据奇函数和偶函数的特点和定义,如果奇函数×奇函数,结果便是“偶函数”。
2、奇函数×奇函数是偶函数。奇函数乘以奇函数等于偶函数。奇函数乘偶函数是奇函数,奇函数加减奇函数是奇函数,偶函数加减偶函数是偶函数,奇函数乘奇函数是偶函数,偶函数乘偶函数是偶函数。偶函数乘偶函数是偶函数。
3、奇函数乘以奇函数所得函数为偶函数。对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
4、是奇函数。记F(x)=G(x)/H(x), G(x)为奇函数,H(x)为偶函数,如果H(x)有零点,那么也是正负成对的,因此F(x)的定义域仍然关于原点对称。而且F(-x)=G(-x)/H(-x)=-G(x)/H(x)=-F(x)。
5、首先,我们需要了解函数的奇偶性。一个函数被称为奇函数,当且仅当对于所有的x,有f(-x)=-f(x)。换句话说,奇函数在坐标原点处对称。相反,一个函数被称为偶函数,当且仅当对于所有的x,有f(-x)=f(x)。
1、在定义域范围内,偶数个奇函数相乘是偶函数,奇数个奇函数相乘是奇函数。奇×奇=偶 奇×偶=奇 偶×偶=偶 奇×奇×奇=偶×奇=奇 其它的高阶的乘法利用类似上面的 *** 就可以推出来。
2、奇函数与奇函数的乘积是偶函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。
3、奇函数乘以奇函数所得函数为偶函数。对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
4、函数与奇函数的乘积是偶函数。奇函数乘奇函数的奇偶性判断:设y=f(x)是定义域A上的奇函数,y=g(x)是定义域B上的奇函数。
5、是奇函数。记F(x)=G(x)/H(x), G(x)为奇函数,H(x)为偶函数,如果H(x)有零点,那么也是正负成对的,因此F(x)的定义域仍然关于原点对称。而且F(-x)=G(-x)/H(-x)=-G(x)/H(x)=-F(x)。
奇函数乘以偶函数等于奇函数。此外,偶函数乘以偶函数还等于偶函数,奇函数乘以奇函数等于偶函数。函数的奇偶性也就是指关于原点的对称点的函数值相等,这是属于函数的基本性质,也就是它们的图象有某种对称性的一元函数。
奇函数乘以奇函数所得函数为偶函数。对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数与奇函数的乘积是偶函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。
奇函数乘奇函数等于偶函数。奇函数乘偶函数是奇函数。奇函数加减奇函数是奇函数。奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数乘偶函数是奇函数。奇函数加减奇函数是奇函数,偶函数加减偶函数是偶函数,奇函数乘奇函数是偶函数,偶函数乘偶函数是偶函数。
函数与奇函数的乘积是偶函数。奇函数乘奇函数的奇偶性判断:设y=f(x)是定义域A上的奇函数,y=g(x)是定义域B上的奇函数。
奇函数×奇函数是偶函数。奇函数乘以奇函数等于偶函数。奇函数乘偶函数是奇函数,奇函数加减奇函数是奇函数,偶函数加减偶函数是偶函数,奇函数乘奇函数是偶函数,偶函数乘偶函数是偶函数。偶函数乘偶函数是偶函数。
奇函数乘奇函数等于偶函数。奇函数乘偶函数是奇函数。奇函数加减奇函数是奇函数。奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
是奇函数。记F(x)=G(x)/H(x), G(x)为奇函数,H(x)为偶函数,如果H(x)有零点,那么也是正负成对的,因此F(x)的定义域仍然关于原点对称。而且F(-x)=G(-x)/H(-x)=-G(x)/H(x)=-F(x)。
奇函数乘以奇函数所得函数为偶函数。对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
结果是:偶函数。根据奇函数和偶函数的特点和定义,如果奇函数×奇函数,结果便是“偶函数”。